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Abstract- Pyranicin (1) and pyragonicin (2) are the first mono-tetrahydropyran annonaceous
acetogemns and gomotnomn (3) possesses an unusual nydroxymea-ulync monety 1-3 were
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brine shrimp lethality test. Both 1 and 2 are selectively cytotoxic against the pancreatic cell line

fPAFA ')\ ina nanel of six human solid tumor cell lines with 1 !hmmm ten times the potency of

adnamycm, whxle 3 showed more potent selectivity against the breast oell line (MCF -7).
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INTRODUCTION

Annonaceous acetogenins are a relatively new class of natural polyketides which have
promising anticancer, antiinfective, and pesticidal properties.' Structurally, most of these long-
chain fatty acid derivatives may be classified into three major groups, i.e., mono-tetrahydrofuran
(THF), adjacent bis-THF, and nonadjacent bis-THF subclasses.! Only two, of approximately 250
previously reported Annonaceous acetogenins, have a tetrahydropyran (THP) ring, and in these
compounds the THP rings are either adjacent to or non-adjacent to a THF ring; both of these
previously known THP bearing compounds have been isolated recently from Rollinia mucosa
(Jacq.) Baill. (Annonaceae).”® Goniothalamus giganteus Hook. f. & Thomas (Annonaceae) is a
tree native to Thailand; in our further bioactivity-directed search of its bark for antitumor
compounds,* guided by lethality to brine shrimp larvae (BST),’ we have now isolated the first
mono-THP annonaceous acetogenins, pyranicin (1) and pyragonicin (2) (Figure 1); also isolated
was goniotrionin (3, Figure 1), a highly cytotoxic mono-tetrahydrofuran with an unusual
hydroxylated-allylic moiety pseudo-threo to the ring flanked-hydroxyl. Both 1 and 2 also
represent the first C3s THP bearing acetogenins, and this finding adds a new structural type to this
family of natural compounds. 1 was about ten times as potent as 2 in cytotoxicity against a panel

of six human tumor cell lines, and both showed selectivities toward the pancreatic cell line

(PACA-2) with potencies equal to or ten times as potent as adriamycin. Compound 3 was about
5 .-
10° times more potent than adriamycin against the breast cancer cell line (MCF-7).
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The molecular formulae of 1 and 2 were both determined as C;sHg O+ by HRCIMS (found
597.4711, calcd. 597.4730; found 597.4741, calcd. 597.4730, respectively), apparently
suggesting that they are Css acetogenins with four hydroxyls (Figure 1). The retention time of 2
on normal phase HPLC was a little longer than that of 1, suggesting a more polar isomer.
Although the "H NMR spectra of 1 (Table 1) and 2 (Table 2) showed peaks diagnostic of the 2,4-
disubstituted o, B-unsaturated y-lactone terminal with a -OH' and a hydroxylated THP ring like
that of mucocin,’ they also presented certain salient features. For 1 and 2, the absence of signals
of a THF ring, the coupling pattern of H-19(H-17) and H-20(H-18), and the chemical shifts of
H/C-19(H/C-17) suggested mono-THP ring acetogenins with a different stereochemistry than that
of mucocin.
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Figure 1. The chemical structures of 1, 1a, 1b, 2, 2a, 2b, and 3.

The skeletal structures of 1 and 2 were established by "H-'"H COSY, NOESY, and EIMS

and bv comnarine the 4T and BC NMR data with those of mnrnrln a known acetogening. ' The
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assigned as H-15(13)/16(14) in 1 and 2, respectively). The presence of four hydroxyis in both 1

and 2 was suggested by the successive losses of four HO molecules (m/z, 18) from the [MH]" in
the CIMS. The position of the hydroxylated-THP ring, the flanking hydroxyi, and the other

hydroxyls along the hydrocarbon chain were determined by EIMS and HREIMS (Figure 2), and 1
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and 2 are identical except for the placement of the THP ring and its flanking hydroxyl beginning at
C-15in1 and at C-13 in 2.

Table 1. NMR Spectral Data (6) for 1, 1a, and 1b.

proton Ber 'H NMR (J in Hz)
carbon 1 i ia ib “ib-lc_
1 174.7 -
2 131.1 -
3b 2.41 ddt (15, 8.5, 1.5) 2.54 2.58 -0.04
3a 333 2.52ddt (15.0,3.5,1.5) 2.56 2.66 -&l
4 65.8 384m 5.31 5.35 'y
5 373 1.49m 1.66 1.57 +0.09
6-8 25.3- 1.18-1.71
9 372 145m
10 71.7 360m 5.02 5.00
11 372 1i45m
12-13 25.3- 1.18-1.71
14 31.5° 1.41m, 1.49m 1.60 1.48 +0,12
15 73.9 3.46 dt (7.5, 3.0) 5.02 5.02 R
16 81.1 3.19ddd (10.5, 7.0, 2.5) 3.45 3.52 -0.07
17 21.5 145m,1.59m 1.40-1.50 135, 1.72
18 30.5 168m 201l m 173,208 173 208 0,0
19 66.1 36lm 5.00 5.03
20 80.0 |334ddd (75, 60,<1.0) 335 3.42 -0.07
21 253- 1.47m,1.62m 117,123 136,142 -0.19,-
22 32.3° 1.18-1.71 m
23-29 25.3- 1.18-1.71 m
30 31.9° 1.18-1.71 m
31 22.6 1.30m
32 14.1 0.88  (7.0)
33 1519 7.19q(1.5) 6.72 6.95 -0.23
34 78.0 5.06 qq (7.0, 1.5) 4386 492 -0.06
35 19.0 1.44d (7. 0) 1.29 1.30 -0.01

* assignment assisted by HMQC and HMBC.
® absolute configuration of carbinol center.

¢ signals are interchangeable.

¢ assignment assisted by 2D NOESY.

A threo relationship at C-15(13)/16(14) of 1 and 2 was suggested by cxtending Born’s
rule and by comparing 'H- and ®*C-NMR chemical shifts with those of mucocin®®. Born’s rule

had nradictad a thron relativ taranchamictry at the amuivalent nacitinne
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mucocin, which was then secured by applying Mosher ester methodology to its formaldehyde
acetal derivative.”® The cis stereochemistry (referring to the side chains at C-16(14) and C-

naale a
peaxat i

-
'
(o
K
s
-9



33-5

Go

F. Q. Alali et al. / Tetrahedron 54 (1998) 5 44

both assume the equatorial positions which are energetically favorable.

Table 2. NMR Spectral Data () for 2, 2a, and 2b.

proto Bce 'HNMR (J in Hz) B
carbo 2 2 2a 2b 2b-2¢
1 174.5 -
2 131.1 -
3b 2.40 ddt (15, 8.5, 1.5) 2.54 2.57 -0.03
3a 33.0 | 2.53ddt (15.0,3.5, 1.5) 2.60 2.67 -0.07
4 69.8 3.85m 5.30 534 R
5 37.3 1.48 m 1.61 1.56 +0.05
6-8 25.3- 1.18-1.71
9 37.0 1.45m A
10 71.5 3.63m 4.99 5.02 R
il 25.3- 1.5 m, 1.68 m
12 25.3- 148 m, 1.69 m
13 74.4 3.50dt (7.5, 3.0) 5.02 4.99 R
14 80.9 | 3.24ddd (10.5, 7.0, 2.5) 3.38 3.48 -0.1
15 21.3 1.48m, 1.58 m 132,140 132,126 0,+0.14
16 30.4 1.69 m, 2.00 m 1.58,2.05 1.70,2.07 -0.12,-
17 66.0 363m 499 5.02 s
18 79.8 | 3.36 ddd (8.0, 5.5, <1.0) 3.32 3.40 -0.08
19 31.4 149m, 1.61 m 1.14,125 135,142 -0.18,-
20-29 | 25.3- 1.18-1.71
30 31.9 1.18-1.71 m
31 22.6 130m
32 14.0 0.88 1 (7.5)
33 151.7 7.19q (1.5) 6.73 6.95 -0.22
34 717.9 5.06 qq (7.0, 1.5) 4.86 491 -0.05
35 19.0 1.44 d (7.0) 1.27 1.30 -0.03

TR g R 1V t=Tal

* assignment by HMQC and HMBC.

® absolute configuration of carbinol center.

The OH group on the THP ring seems to assume the axial position. In mucocin® the THP
hydroxyl group assumes the equatorial position showing a "H-NMR signal for H-23 at 5 3.28 and
a C-NMR signal for C-23 at § 70.5, while H-19(17) in 1 and 2 shows '"H-NMR signals at
3.61(3.63) and PC-NMR at & 66.1(66.0), respectively; these large differences in values may
indicate a different stereochemical environment within the THP ring system. Also, H-24 in
mucocin® appears as a doublet of a triplet, while H-20(18) in 1 and 2 is ddd (with one J value <1
Hz) indicative of an e—a arrangement between H-19(17)/20(18); an e—e arrangement would
require both large side chains to be in the axial positions which is highly unlikely. In addition, H-
19(17)/20(18) gave very weak coupling in the COSY spectra which confirms the a—e spatial
configuration between these two protons.
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Figure 2. Diagnostic EIMS fragmentions of 1 and 2; ions in parentheses were not observed; *
ions confirmed by HREIMS.
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Figure 3. 2D-NOESY correlations of the hydroxylated-THP ring in both 1 and 2.

The absolute stereochemistries of 1 and 2 were determined by advanced Mosher ester
methodolor.zv The (R)- and (S)- tetra-MTPA esters of 1 and 2 were prepared, their '"H NMR

signals were assigned by the COSY spectra, and the corresponding A3 (5-R) values were
calculated (Tables 1 and 2). The negative value of -0.07(-0.1) at H-16(14) in both 1 and 2,

respectively, suggested an R configuration at H-15(13) and, consequently, considering their
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assign S to C-19(17). Using Hoye’s models® for 4-OH 2, 4-disubstituted y-lactones, R and §
configurations were assigned, respectively, to H-4 and H-34 in both 1 and 2.
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relative siereochemistries, led us to assign R configurations to positions 16{(14) and 20(18) and to



Table 3. NMR Spectral Data for Goniotrionin (3).

o
r
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| position H/C 'H NMR (/ in Hz) “CNMR B)

1 - 174.6

2 - i3i.2
3a 2.53ddt (15.5,3.5, 1.0)

3b 2.2.40 ddt (15, 8.0, 1.0) 334

4 3.85m 699

5 1.48 m 372
6-8 1.18-1.65m 25.5-37.2
9 1.53-164m 354
10 389m 793

11 2.03,1.54m 324
12 1.96,1.60 m 282
13 385m 81.8
14 3.73dt(11.5,3.5) 71.5
15 1.58 m 396
16 4.78 dt (8.0, 4.0) 65.0
17 548 m 131.6
18 544 m 1322
19 2.10,2.05m 25.5-37.2

20-29 1.18-1.65m 25.5-37.2
30 1.18-1.65m 319
31 130 m 227
32 0,881 (7.0) 141
33 7.19q(1.5) 151.9
34 5.07qq (7.0, 1.5) 78.0
35 1.44 d (7.0) 19.1
* asgignment assisted by HMQC.

The absolute stereochemistry at H-10 in both 1 and 2 could not be assigned immediately
from the COSY spectra of the (S)- and (R)-MTPA derivatives due to overlapping signals. This
was resolved by directly comparing the R and § values at H-10 of both 1 and 2 to those of the
per-MPTA derivatives of longicoricin® (H-10 and H-15 diol) and goniothalamicin'® (H-10 and H-
13 diol); consequently, the R configuration was assigned at H-10 for both 1 and 2.

Compound 3 was also isolated as a whitish wax. Its molecular weight was suggested by a
molecular ion peak at m/z 579 [MH]" in the FABMS. The HRFABMS gave m/z 579.4597 for the
[MH]" ion (calcd. 579.4625) corresponding to the molecular formula CssHs;0s.

Compound 3 showed an IR carbonyl absorption at 1740 cm™, a8 UV (MeOH) A, at 218
nm (log €, 3.46), the proton resonances at § 7.19, 5.07, 3.85, 2.54, 2.54, 2 41, and 1.44 (Table 3),
and carbon resonances at & 174.6, 1519, 131.2, 78.0, 69.9, and 19.1 (Table 3) all of which
provided characteristic spectral features for an o, B-unsaturated y-lactone fragment with a 4-OH.
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Figure 4. Diagnostic EIMS fragments ions of goniotrionin (3)

The presence of three OH groups in 3 was suggested by a prominent OH absorption at
3368 cm™ in the IR spectrum and was confirmed by three successive losses of H;O (m/z 18) from
the [MH]" in the CIMS and FABMS (Figure 4). The “C NMR of 3 showed three carbon
resonances due to oxygen-bearing carbons at § 71.5 (C-14), 69.9 (C-4), and 65.0 (C-16)
indicating the existence of three secondary OH moieties. The existence of a mono-THF ring with

one flanking hydroxyl was suggested by the 2D-COSY cross peak, between & 3.74 (H-14) and
Q3 (C- m\ R12 ((“-11\ and 71 5 (C-14) The
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hydroxylated-allylic moiety in a long chain was found, by our group, {0 have a h large

chemical shift difference between the double bond protons (A=0.18 ppm) and carbom (A=5.0
ppm), while in 3 the difference was 0.04 between H-17 and H-18 and 0.6 between C-17 and C-
18.

Table 4. Comparative chemical shift differences for 1,3 diois.
(500 MHz, & in ppm)
1,3 pseudo-erythro diol 1,3 pseudo-threo diol
Compounds 3'H 513C 5'H 513C 8'H 5'3C 5'H 83C
Muricatocin A® H-10 C-i0 H-12 C-i2
(3.94) (72.8)  (3.86)  (72.6)
Muricatocin C* H-10 C-10 H-12 C-12
(3.94) (69.6) (3.86)  (69.2)
isolaied hyurex‘y’x
oxymethine” 'H (3.58)/"°C (712.2)
AS +0.36 +0.60 +0.28 +0.40 +0.36 -2.6 +0.28 3.0
Goniotrionin (3)
5 at H-14/C-14 'HE.73y°C (71.5)
Fujimoto model
equivalent 3 'H (3.37)%*C (74.2)
A5 (H/C) (+0.36/-2.7)

* The relative stereochemistries of the 1,3 diol were resolved by preparing acetonide derivatives.'*'
* Data taken from reticulatamo! (a non-THF acetogenin bearing only one isolated hydroxyl at C-15 in a long chain hydrocarbon).”?
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The relative stereochemistries of the ring system were established as frans/threo across C-
10/C-13 and C-13/C-14, respectively, by comparing the 'H NMR and “C NMR to modei
compounds synthesized by Fujimoto et al.'>. The chemical shifts of H-14/C-14 were deviated
from the equivalent signals in the model compound due to the effect of the 1,3 diol. A pseudo-
threo spatial relationship between H-14 and H-16 was suggesied by analyzing the 'H and "’C

chemical shifts values of 1,3 pseudo-threo and -erythro diol acetogenins (Table 4). In comparison
with an isolated hydroxyl oxymethine along a hydrocarbon chain, hydroxyl oxymethines of 1,3
P Py AN ar
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ppm downfield chemical shift in the *C-NMR. "* Examples are muricatocins A and C with their

~+032 ppm ....c:,.u Abrnntnnl obif tem sha MY WTAID ...
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H-10/H-12 diols.'*** The relative stereochemistries of the 1,3 diols in muricatocins A and C were
rythro and -threo, respectively, by preparing the acetonide
derivatives."*’> The chemical shift difference between H-14/C-14 in 3, from the equivalent signals
in Fujimoto’s model compounds, % suggested a pseudo-fhreo relationship between H-14 and H-16
(Table 4).

Compound 3 is the first acetogenin with a hydroxylated-aliylic moiety one carbon away
from the THF ring system. The placement of the mono-THF, the allylic hydroxyl, and the other
two hydroxyl groups were established based on careful EIMS spectra analysis of 3 (Figure 4) and

on 2D smgle- and double relaye(l-LUbY

Table 5. Biological data for 1-3.

BST* | YFM' Cytotoxicity (EDso, ug/mL)
Compound | LCs LCso A-549° MCF-7° HT-29" A-498" PC-3* PACA-2"
(ug/mL | (ug/mlL) , ,
1 0.3 107.9 2.8x107  3.9x10" 1.2 1.8x107 4.1x107 1.3x10°
2 0.9 73.8 2.0 1.6 28 13 1.2 5.8x10
3 NT NT 77x107  53x10°  3.4x107  20x10° 36x107  5.4x10°
rotenone NT 0.8 NT NT NT NT NT NT
adriamycin' | NT NT 7.8x10%  1.2x107  3.9x107 6.8x107 36x107  1.6x10°

*Brine shrimp lethality test; *Yellow fever mosquito larvae test; ‘Human lung carcinoma;
“Human breast carcinoma; “Human colon adenocarcinoma; Human kidney carcinoma;
#Human prostate adenocarcinoma; *Human pancreatic carcinoma,

MPpositive control standards. NT: not tested.
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(pancreatic carcinoma) in a panel of six human solid tumor cell lines'” (Table 3); 1 showed about

ten times the potency of adriamycin in PACA-2 and is generally about ten times as potent as 2,

timium etructurs activitv relationehin hac

mium structure activity relationship has
these ring systems beginning at C-15."® Compound 3 was significantly cytotoxic against the panel
of six cell lines with potent activity, 10° times that of adriamycin, against the breast cancer cell line
(MCEF-7).

Annonaceous acetogenins inhibit cancerous cells by the blockage of mitochondrial
complex I (NADH-ubiquinone oxidoreductase)'® and also through the inhibition of the NADH
oxidase prevalent in the plasma membranes of tumor cells.”® These mechanisms deplete ATP and
likely induce apoptosis (programmed cell death);*! pesticide-resistant German cockroaches and
multidrug resistant tumor cells are especially thwarted by these actions probably through the

inhibition of ATP-dependent efflux pumps.”>>
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Instrumentation. Optical rotations were determined on a Perkin 241 polarimeter. IR spectra
(film) were measured on a Perkin-Elmer 1600 FTIR spectrometer. UV spectra were taken in

MeOH on a Beckman DU 640 series spectrophotometer. 'H NMR, 'H-"H COSY, and “C NMR
spectra were obtained on a Varian VXR-500S spectrometer. Low resolution MS data were

collected on a Finnigan 4000 spectrometer. High resolution CIMS were performed on a Kratos

MS50. HPLC separa io

1
AVARI SV, o 1 avavsaa

ns were nerformed with a Rainin Dvnamax solvent deliverv svstem

v pvia Vvaua sy ey BMVRAVSR Y eyesseil

(modei SD-200) using a Dynamax x software system and a silica gel column (Dynamax 60-A 250 x
21 mm) equipped with a Dynamax absorbance detector (model UV-1) set at 225 nm. Analytical
TLC was carried out on silica gel plates (0.25 mm) developed with CHCl,-MeOH (9:1) and

roas TlaNTY

visualized with 5% phosphomolybdic acid in EtOH.
Plant material. The stem bark of Goniothalamus giganteus (B-826538, PR-50604) was
collected in Thailand in September 1978 under the auspices of Dr. Robert E. Perdue, Medicinal

e TTG cville MY where vt " ingat
tory, USDA, Belisville, MD, where voucher specimens are maintained.

Extraction and isolation. The stem bark (10.7 kg) was ground into powder and percolated with
95% ethanol. The dry extract (900 g) (FO01) was partitioned between H;O and CH;Cl; to give a

L

iy



20 layer (F002)
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nd a CH,Cl; laver. The residue of the CH;Cl; |

all L Lyt

NANO/ 2 A _MNYT a A A _NYT B

pa.muonea Detween $0% MeOH and nexane glVlﬂg a MeOH llyﬂ' (‘l’W g } (I'UUD ) ann a nexnne
layer (30 g) (F006). The MeOH layer (FO05) was the most active fraction in the BST (LCso 1.02
ug/ml). Thus, a portion (190 g) of FOO5 was chromatographed over open silica gel columns

directed by the BST test, using gradients of hexane-CHCl;-MeOH. Collected fractions were

combined into eight major pools (P1-P8) according to their TLC patterns. The bioactive P4 was
repeatedly chromatographed over open silica gel columns followed by normal phase HPLC, 10%
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1319, 1086; CIMS (isobutane) m/z [MH]" 597 (45), [MH-H,0]" 579 (100), [MH-2H,0]'561
(93), [ MH-3H,0]" 543 (43), [ MH-4H,0]" 525 (3); EIMS diagnostic fragments see Figure 2;
HRCIMS (isobutane) m/z 597.4711 for C3sHgsQ7 (calcd 597.4730); 'H NMR (CDCls, 500 MHz)
and ®C NMR (CDCls;, 125 MHz) see Table 1.

Pyragonicin (2). White amorphous wax. (2 mg); [a]p™ = -25.6° (¢ =0.008, CHCl;); UV (McOH)
Amax =215 nm (log € = 3.71); IR vy, cm” (film on NaCl plate): 3479, 2920, 2851, 1748, 1456,
1318, 1084; CIMS (isobutane) m/z [MH]" 597 (51), [MH-H;0]" 579 (100), [MH-2H,0]" 561
(54), [ MH-3H,0]" 543 (13), [ MH-4H,0]" 525 (1), EIMS diagnostic fragments see Figure 2;
HRCIMS (isobutane) m/z 597.4741 for C3sHssO5 (caled 597.4730); "H NMR (CDCl, 500 MHz)
and *C NMR (CDCl, 125 MHz) see Table 2.

Goniotrionin (3). A whitish wax (1.5 mg); UV (MeOH) A.... = 218 nm (log € = 3.46); IR (film
on NaCl plate) 3368, 2916, 2849, 1740, 1721, 1467, 1328, 1086, 1058, 841; CIMS (isobutane)
m/z (%) [MH]" 579 (1), [MH-H,0]" 561 (71), [MH-2H,0]" 543 (100), [MH-3H;0]" 525 (3);
HRFABMS m/z 579.4597 for C37Hgg0; [MH]" (calcd 579.4625); EIMS see Figure 4; 'H and °C
NMR see Table 3.

Preparation of Mosher esters. To an acetogenin (0.5-1 mg, in 0.5 ml of CHCl,) were
sequentially added pyridine (0.1 ml), 4-(dimethylamino)pyridine (0.1 mg), and 15 mg of (R)-(-)-a-
methoxy-a-(trifluoromethyi)-phenyiacetyi chioride. The mixture was stirred at rt from 4 hr to

overnight, checked with TLC to make sure that the reaction was complete, and passed through a



t (0.6 x 4 cm) containing silica gel (60-200 mesh) and eluted with 3 ml CH,Cl,.
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,Cl, residue, dried in vacuo, was redissolved in 1% NaHCO; (5 mi) and H,O (2 x 5 mi);
,Cl; layer was dried in vacuo to give the (S)-Mosher esters. Using (5)-(+)-a-methoxy-o-
trifluoromethyl)-phenylacetyl chloride gave the (R)-Mosher esters. Both vields were typically

4
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higher than 90%. For partial 'H NMR assignmenis of ia, ib, Za, and Zb see Tabies 1 and 2.
Bioassays. The bioactivities of extracts, fractions, and pure compounds were routinely assayed
using a test for lethality to brine shrimp larvae (BST). The yellow fever mosquito larvae

te (YFM) assay'! was used to determine the relative pesticidal activities of

compounds 1 and 2; rotenone was used as the positive pesticidal control standard. In vitro

cytotoxicities, against six human tumor cell lines, were carried out at the Purdue Cancer Center,

ing standard 7-day MTT assavs for A-549 (human !“in.g carcinnma)

MGIM /TURY IVAL 1 GOSRYO AWE JAT W V.S | ZISLLEEE WS WARELBAIK J,

MCF-7 (human breast carcinoma), HT-29 (human colon adenocarcinoma), A-498 (human kidney
carcinoma), PC-3 (human prostate adenocarcinoma) and PACA-2 (human pancreatic carcinoma).

Adriamycin is always used as a positive antitumor control in the same runs."
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